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ABSTRACT

Aim Species distribution models (SDMs) are increasingly used to address

numerous questions in ecology, biogeography, conservation biology and evolu-

tion. Surprisingly, the crucial step of selecting the most relevant variables has

received little attention, despite its direct implications for model transferability

and uncertainty. Here, we aim to address this with a continent-wide, evaluation

of which climate predictors provided the most accurate SDMs for bird

distributions.

Location Conterminous United States.

Methods For 243 species, we used yearly data since 1971 (from the North

American Breeding Bird Survey) to run SDMs (six different algorithms) with

combinations of six relatively uncorrelated climate predictors (selected from 22

widely used climate variables). We then estimated the importance of each pre-

dictor – both spatially and over a 40-year time period – by comparing the

accuracy of the model obtained with or without a given predictor.

Results Three temperature-related variables (annual potential evapotranspira-

tion, mean annual temperature and growing degree days) produced signifi-

cantly more accurate SDMs than any other predictors. Among precipitation

predictors, annual precipitation provided the most accurate results. Albeit only

rarely used in SDMs, the moisture index performed similarly strongly. Interest-

ingly, predictors that summarize average annual climate produced more accu-

rate distributions than seasonal predictors, despite distinct seasonal movements

in most species considered. Encouragingly, spatial and temporal (over 40 years)

evaluation of variables yielded very similar results.

Main conclusions The approach presented here allowed us to identify the sta-

tistically most relevant predictors for birds in the USA and can be applied to

other taxa and/or in different parts of the world. Appropriately selecting the

most relevant predictors of species distributions at large spatial scale is vital to

identifying ecologically meaningful relationships that provide the most accurate

predictions under climate change or biological invasions.

Keywords

Bioclim variables, model transferability, spatial evaluation, species distribution

models, temporal evaluation, variable importance.

INTRODUCTION

Species distribution models (SDMs) relate species presence/

absence data to environmental variables based on statisti-

cally or theoretically derived response surfaces (Guisan &

Zimmermann, 2000). They are increasingly used to address

numerous questions in ecology, biogeography, conservation

biology and evolution (Guisan & Thuiller, 2005). SDMs have

been used to test biogeographical, ecological and evolution-

ary hypotheses (Graham et al., 2004; Carnaval & Moritz,
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2008; Vega et al., 2010), to predict species’ invasion and pro-

liferation (Broennimann & Guisan, 2008; Villemant et al.,

2011), to discover new populations or unknown species

(Raxworthy et al., 2003; Bourg et al., 2005; Guisan et al.,

2006), to assess the potential impact of climate, land use and

other environmental changes on species distributions (Thuil-

ler et al., 2005; Lawler et al., 2009; Hof et al., 2011; Barbet-

Massin et al., 2012b) and to support conservation planning

and reserve selection (Williams et al., 2005; Marini et al.,

2009; Ara�ujo et al., 2011).

There is, however, increasing appreciation for the limits to

the accuracy and transferability of SDMs (Menke et al., 2009;

Anderson & Raza, 2010; Dormann et al., 2012; Heikkinen

et al., 2012). These include the prediction variability stem-

ming from the choice of modelling algorithm (Elith et al.,

2006; Buisson et al., 2010), which lead to the use of ensem-

ble forecast methods (Ara�ujo & New, 2007; Marmion et al.,

2009) that emphasize the central tendency of several models.

Additionally, given that confirmed absences are usually diffi-

cult to obtain, especially for mobile species (Mackenzie &

Royle, 2005), pseudo-absences are widely used, adding yet

another source of uncertainty (Chefaoui & Lobo, 2008; Van-

DerWal et al., 2009; Wisz & Guisan, 2009; Barbet-Massin

et al., 2012a). In climate change applications of SDMs, these

issues are exacerbated by the uncertainty related to the

choice of general circulation model and emission scenario

(Thuiller, 2004; Barbet-Massin et al., 2009; Lawler et al.,

2009; Buisson et al., 2010). One additional, significant and

to date surprisingly little-tackled source of error-affecting

inference and prediction is predictor selection (Synes &

Osborne, 2011; Braunisch et al., 2013).

Identifying the most appropriate variables is a crucial step

to maximize the performance of species distribution model-

ling and its projection in space or time (Austin, 2002; Ara�ujo

& Guisan, 2006; Elith & Leathwick, 2009; Menke et al., 2009;

Ara�ujo & Peterson, 2012). Predictions obtained with inap-

propriate variables are more likely to exhibit patterned resid-

uals than predictions obtained with more proximal variables

(Leathwick & Whitehead, 2001). As pointed out by Austin

(Austin, 2002), ‘species distribution models will have only

local value for either prediction or understanding when using

distal variables. Models based on proximal resource and

direct gradients will be the most robust and widely applica-

ble’. Overlooking potential ecological mechanisms or pro-

cesses is therefore a limiting factor in the application of

species distribution modelling. However, the crucial step of

selecting the most relevant variables has received little atten-

tion compared with the choice of the modelling method (but

see Ashcroft et al., 2011; Synes & Osborne, 2011; Watling

et al., 2012; Williams et al., 2012). Previous work has

assessed whether climate variables or land use variables

should be considered in SDMs (Luoto et al., 2007; Menke

et al., 2009). However, the question of the more relevant cli-

mate variables remains open despite its proven influence on

SDMs results (Syphard & Franklin, 2009; Synes & Osborne,

2011). Ideally, the choice of climate variables to include

within SDMs should be based on prior knowledge regarding

the variables’ ecological relevance for a species. Unfortu-

nately, such information is rarely available. As climate data –

both nationally and globally (e.g. Hijmans et al., 2005; Di

Luzio et al., 2008) – proliferate, an increasing variety of cli-

mate predictors becomes available for inclusion in SDM. The

greater the set of variables used in a SDM, the more likely is

it that ecologically relevant predictors are also included, but

unfortunately, this also increases the risk of overfitting

(Beaumont et al., 2007). A greater number of predictors also

increases collinearity, a potentially severe problem when a

model is trained on data from one region or time, and pre-

dicted to another with a different or unknown structure of

collinearity (Dormann et al., 2013). Limiting SDMs to a

minimal set of predictors seems therefore to be the best

alternative to avoid these issues. This leaves the choice of

final climatic predictors a key remaining challenge for species

distribution modelling (Ara�ujo & Guisan, 2006; Ashcroft

et al., 2011; Williams et al., 2012).

Here, we use an almost continental, yet spatially detailed

and standardized dataset for birds to develop and demon-

strate a comprehensive approach for identifying the climatic

predictors providing greatest model accuracy. Specifically, we

assess predictor strength not only spatially, but also with

regard to temporal model transferability over a 40-year per-

iod. We argue that in absence of prior ecological knowledge

or additional data, cautious variable selection is most likely

to identify process-based constraints on distributions and

provide ecologically sound models. We use the North Ameri-

can Breeding Bird Survey (BBS) data which offer many

advantages for this work. It is possible to develop a represen-

tative, yet geographically expansive subset of spatial samples

(routes) which has a spatial resolution (c. 40-km length) at

which climate effects are expected (Luoto et al., 2007) and

have been shown to dominate (Jim�enez-Valverde et al.,

2011). Finally, the survey started more than 40 years ago

allowing training and evaluating the model with different

time periods and thus offering a temporally independent

evaluation that is often missing from SDM studies. For 243

species, we used yearly data to run SDMs (six different algo-

rithms) with many combinations of six relatively uncorrelat-

ed climate predictors (from 22 widely used climate

variables). We then estimated the importance of each predic-

tor – both spatially and temporally – by comparing the accu-

racy of the model obtained with or without a given

predictor.

METHODS

Species data

Presence/absence data of North American birds were derived

from the North American Breeding Bird Survey (BBS; USGS

Patuxent Wildlife Research Centre, http://www.pwrc.usgs.

gov/bbs/). Each year during the height of the avian breeding

season, June for most of the USA, participants skilled in
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avian identification collect bird population data along road-

side survey routes. Each survey route is 39.4-km long with

50 stops at 0.8-km intervals. At each stop, a 3-min point

count is conducted. During the count, every bird seen within

a 0.3-km radius or heard is recorded. Surveys start one-half

hour before local sunrise and take about 5 h to complete.

We considered a given species to be present at a route in a

given year if it was observed at least once; otherwise, the spe-

cies was considered absent. The spatial resolution of our

study is therefore 39.4 9 0.6 km as a BBS route is the unit

of analysis. Currently, 4100 survey routes are located within

the continental USA, but not all were surveyed yearly or

since programme onset in 1967. Here, we considered only

the routes which were surveyed at least three times in each

of the following 5-year period: 1971–1975, 1976–1980, 1981–

1985, 1986–1990, 1991–1995, 1996–2000, 2001–2005, 2006–

2010. The potential predictors of bird distributions we

explore in this study are all climatic which limits our ability

to account for effects of habitat change. We therefore identi-

fied and removed from our analysis all BBS routes which

may have experienced significant changes in vegetation or

land cover over the study period. US-wide high-resolution

land cover information is lacking for the early part of the

study period, but National Land Cover Datasets allowed an

assessment for 1992, 2001 and 2010 (Vogelmann et al., 2001;

Homer et al., 2007; Fry et al., 2011). These datasets consist

of a 16-class land cover classification that has been applied

consistently across the USA at a spatial resolution of 30 m.

We used them to select the BBS routes for the study in

which more than 95% of the 30-m pixels within a 300-m

buffer along the route had no change in land cover class

among the three time periods. Overall, 427 routes were con-

sidered for this study (Fig. 1). Within these 427 routes, 473

species were observed at least once, and for modelling pur-

poses, we considered only the 243 species (see Appendix S1

in Supporting Information for the list of species) that had at

least 10 observed presences between 1971 and 1975 (exclud-

ing water birds, raptors and nocturnal species).

Climate data and climatic variables

Climate data were obtained from the PRISM Climate Group

(Oregon State University, http://prism.oregonstate.edu).

These data consist of monthly maximum and minimum

temperature and monthly precipitation yearly from 1890 at

2.5-arcmin resolution (c. 4 km). For each of the 427 routes,

we extracted values from pixels intersecting the 300-m buf-

fered route and calculated the weighted average of these pix-

els (weighted by the percentage of the pixel intersecting the

buffered route). From all potential monthly climatic mea-

sures, we selected the 19 ‘bioclim’ variables (Busby, 1991),

growing degree days above 5 °C (GDD), potential evapo-

transpiration (PET) and the moisture index (MI) (Table 1)

as predictors with greatest use and relevance for birds (Hij-

mans & Graham, 2006; Huntley et al., 2008; Peterson &

Nakazawa, 2008; Gregory et al., 2009; Barbet-Massin et al.,

2012b). The ‘bioclim’ variables cover annual trends, seasonal-

ity and extreme or limiting environmental factors related to

temperature and precipitation per se. To these ‘bioclim’ vari-

ables, we added GDD, PET and MI as they are regarded as

determinants of physiological processes limiting plant distri-

butions (Prentice et al., 1992) that could have an indirect

effect on bird distributions. The 19 bioclim variables were

calculated yearly (1971–2010) using the biovars function

within the ‘dismo’ package. GDD, PET and MI were calcu-

lated (1971–2010) following Synes & Osborne (2011). All

variables were calculated yearly from 1971 to 2010, so as to

match our yearly presence/absence data. However, as the

routes were mostly surveyed in June, the 1971 dataset

(matching presence/absence from 1971) was calculated using

June 1970–May 1971 monthly data instead of the calendar

year, and so forth for all other years.

Figure 1 Breeding Bird Survey routes used in the study. These routes did not experience significant changes in vegetation or land

cover over the study period and were surveyed at least three times during each of the following 5-year period: 1971–1975, 1976–1980,
1981–1985, 1986–1990, 1991–1995, 1996–2000, 2001–2005, 2006–2010. Bird Conservation Regions (BCRs) are depicted in different

colours. BCRs are ecologically distinct regions in North America with similar bird communities, habitats and resource management

issues.
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Estimating predictors relevance for species

distribution

To estimate the relevance of each predictor for bird species

distribution in North America, we ran a variety of species

distribution models using different predictors and assessed

how the accuracy of these models varied with the predictor

used.

Many of the 22 selected predictors were highly correlated

with one another (Fig. 2). We therefore split them up into

‘correlation groups’ such as each predictor from one group

has a Pearson’s correlation < 0.7 with each variable in any

other group (Dormann et al., 2013). This resulted in six

‘correlation groups’ (Table 1 & Fig. 2), four of them holding

only one predictor: bio2 (mean diurnal range), bio8 (mean

temperature of wettest quarter), bio18 (precipitation of

warmest quarter) and MI (moisture index). The fifth group

included the 11 remaining predictors related to temperature,

whereas the sixth group included the seven remaining pre-

dictors related to precipitation. Note that two predictors can

have a correlation < 0.7 with one another and still belong to

the same group because they both have a correlation > 0.7

with a third predictor.

For each species, we used six different SDMs with the ‘bio-

mod2’ package (Thuiller et al., 2009): two regression

methods (GLM – Generalized Linear Model and GAM –

Generalized Additive Model), one classification method

(FDA – Flexible Discriminant Analysis) and three machine

learning methods (ANN – Artificial Neural Network, BRT –

Boosted Regression Trees and RF – Random Forest) within

an ensemble framework (Ara�ujo & New, 2007), considering

the median climate suitability value for each route. For each

species, presences and absences were given different weights

so that the total weight of presences would be equal to the

total weight of absences (therefore ensuring the same 0.5

prevalence for all species). In order to correct for a potential

spatial bias in the coverage of BBS routes (Fig. 1), each route

was weighted so that each Bird Conservation Region (U. S.

North American Bird Conservation Committee, 2000) would

have the same overall weight. Bird Conservation Regions

(BCRs) are ecologically distinct regions in North America

with similar bird communities, habitats and resource man-

agement issues. To limit the collinearity among predictors

used for the SDMs, only one predictor within a ‘correlation

group’ was used – six predictors overall. For each species,

models were run with all 77 possible combinations (11 pre-

dictors in the ‘temp’ group 9 seven predictors in the ‘prec’

group, all other groups containing only one predictor). To

assess the accuracy of the different models obtained using

different sets of predictors, we used a threshold-independent

method, the area under the relative operating characteristic

curve (AUC) (Fielding & Bell, 1997). AUC has been recently

criticized (Lobo et al., 2008) because of its dependence on

parameters such as the prevalence and the spatial extent to

which models are carried out, but in this study, it is only

used to compare models obtained with different predictors

for each species (the prevalence and the geographical extent

are therefore constant). We assessed model accuracy by pro-

jecting both spatially and temporally. We calculated seven

‘spatial’ AUCs values by fitting the models with a random

50% subset of the 427 routes (using the yearly data for

1971–1975) and projecting them into the 50% remaining

routes (during the same 5-year timeframe) for evaluation.

We acknowledge that under this procedure (and lack of fully

suitable alternatives), spatial autocorrelation will inflate abso-

lute AUC values. We expect, however, the effect if this issue

for relative AUC values (differences between variables) to be

minimal. For the temporal evaluation, the models were fitted

using the yearly data for 1971–1975 and projected into seven

different 5-year timeframes: 1976–1980, 1981–1985, 1986–

1990, 1991–1995, 1996–2000, 2001–2005, 2006–2010. Seven

‘temporal’ AUCs were calculated by comparing the projec-

tions obtained for each timeframe to the actual data sur-

veyed. These AUC measures allow us to assess how model

accuracy differs between different predictors within a group.

To assess model accuracy of each correlation group, each

Table 1 List of climatic predictors used in the study with their

abbreviation and the ‘correlation group’ they were included in.

Abbreviation

Correlation

group Climatic predictor

bio1 temp Annual mean temperature

bio3 temp Isothermality (bio2/bio7)

bio4 temp Temperature seasonality

(standard deviation)

bio5 temp Max temperature of warmest

month

bio6 temp Min temperature of coldest month

bio7 temp Temperature annual range (bio5-

bio6)

bio9 temp Mean temperature of driest

quarter

bio10 temp Mean temperature of warmest

quarter

bio11 temp Mean temperature of coldest

quarter

GDD temp Growing degree days

PET temp Potential evapotranspiration

bio12 prec Annual precipitation

bio13 prec Precipitation of wettest month

bio14 prec Precipitation of driest month

bio15 prec Precipitation seasonality

(coefficient of variation)

bio16 prec Precipitation of wettest quarter

bio17 prec Precipitation of driest quarter

bio19 prec Precipitation of coldest quarter

bio2 bio2 Mean diurnal range [mean of

monthly (max temp�min temp)]

bio8 bio8 Mean temperature of wettest

quarter

bio18 bio18 Precipitation of warmest quarter

MI MI Moisture Index
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model that was run with a given set of predictors was run

six more times by removing one of the predictors in turn.

This then allowed us to infer the importance of each group

by comparing spatial and temporal AUC obtained with or

without a variable of a given correlation group.

RESULTS

Among the 243 evaluated bird species, the developed species

distribution models including six climatic predictors (one

from each group) generally show very good predictive accu-

racy, with a mean spatial AUC of 0.917 (� 0.076) (predic-

tion in space) and a mean temporal AUC of 0.896 � 0.090.

Prediction in time, as expected, yielded a slightly lower, but

still strong average AUC.

We use the difference in AUC resulting from a predictor’s

omission in the multipredictor model to illustrate relative

variable importance. As expected given the similarity of the

models compared within a species (same presence/absence

data and five common predictors), these absolute differences

are usually quite small (< 0.03). However, they usually repre-

sent statistically highly significant differences (see Fig. S1 for

the statistical multiple mean comparisons). For the spatial

assessment, we find that predictors in the ‘temp’ group

(Figs 3a & S1a for statistical multiple mean comparisons)

perform strongest, with MI next in relevance, followed by

bio2. Then bio18 and predictors in the ‘prec’ group perform

similarly, and the bio8 variable appears less relevant. Interest-

ingly, this ranking is very similar for the temporal evalua-

tions (Figs 3b, 4 & S1b for statistical multiple mean

comparisons), except that bio18 performs better than bio2

(which still performs better than predictors in the ‘prec’

group).

With both spatial and temporal assessments, we are able

to further differentiate predictor relevance among the ‘temp’

and the ‘prec’ groups. Among ‘temp’ predictors, PET, bio1

and GDD were consistently more relevant, both spatially and

temporally (Figs 4 & S1c,d), while in the ‘prec’ group bio12

performed significantly better (Figs 4 & S1e,f) (see Fig. S2

for statistical multiple mean comparisons for both). Among

the ‘temp’ group, four predictors (bio3, bio4, bio7 and bio9)

emerge as not highly correlated with PET, bio1 or GDD (the

most relevant within the group) (Fig. 2). Among those four

predictors, bio4 is the most relevant (Figs 4 & S1c,d) for sta-

tistical multiple mean comparisons). Despite ranking low

within the group, it still appears to be more relevant than

any other predictor outside the ‘temp’ group (Fig. 4). Simi-

larly, bio9 (not highly correlated with PET, bio1, GDD or

bio4) appears to be more relevant than any other predictor

outside the ‘temp’ group (Fig. 4). Further, even though the

‘prec’ group overall does not appear very important, bio12 is

a stronger predictor than bio18 and bio2. Therefore, the pre-

dictors that appear to provide the most accurate bird distri-

butions while being minimally collinear include: (1) either

PET (the potential evapotranspiration) or bio1 (annual mean

temperature), (2) bio4 (temperature seasonality), (3) bio9

(mean temperature of the driest quarter), (4) MI (moisture

index), (5) bio12 (annual precipitation), (6) bio2 (mean

Figure 2 Correlation matrix of all

potential climatic predictors. Positive

correlations are represented by circles,

and negative correlations are represented

by squares. Values above 0.7 are depicted

in red and were used to split the

predictors into ‘correlation groups’

(defined as any two predictors from two

different groups having a Pearson’s

correlation < 0.7). The six groups that

were identified – ‘temp’, ‘prec’, bio2,

bio8, bio18 and MI from the upper left

corner to lower right corner – are

bounded by black lines.
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diurnal range) and (7) bio18 (precipitation of warmest quar-

ter).

All above results were derived from evaluation metrics

(AUC) calculated by comparing observed data with a pre-

dicted distribution that was calculated as the median of all

six SDM model predictions. Interestingly, when calculating

AUCs separately for each modelling technique, we find little

variance among most of these (FDA, GAM, GBM and GLM,

Figs S3 & S4). ANN shows greatest discrepancy, especially

with the ranking of predictors within ‘prec’, as bio12 is not

detected as being a relevant predictor for this modelling

technique. Results from RF are quite consistent except for

the fact that the AUC difference is five times higher for the

spatial evaluation than for the temporal evaluation (and

higher than evaluation from other modelling techniques).

This probably results from a tendency of RF to overfit the

data or to perform not as well when extrapolation is neces-

sary (Heikkinen et al., 2012; Dormann et al., 2013). We note

that for the spatial evaluation, the training/testing split is 50/

50. Despite the random assignment, the climate space cov-

ered by the evaluation data is thus bound to have slight dif-

ferences to that of the training data. This is different to the

temporal evaluation, where the same routes are considered

for training and evaluation. Further, climate variability

among time intervals is less strong than that within a time

interval (among years). As a consequence, we expect that

actual extrapolation in climate space is more prevalent for

the spatial evaluation than the temporal evaluation.

Predictors differ strongly among the 243 species in the

consistency of their relevance (Figs 5 & S5 for results for

individual species). As expected, the most important predic-

tors overall are also the ones most relevant for the greater

(a)

(c)

(b)

Figure 3 Importance of each ‘correlation group’ to provide

better accurate SDMS. This importance was assessed by

comparing the AUC of the model obtained with all six

predictors (one from each correlation group) to the AUC of the

model obtained with all but one predictor. The higher the

difference, the more important the predictor. (a, b) Boxplots

(showing variability among species) of AUC difference by

removing the predictor from one of the six ‘correlation groups’,

evaluated either spatially (a) or temporally (b). (c) Details of the

different temporal evaluations (Models were calibrated with data

from 1971–1975 and projected to each of the following 5-year

periods. Each of these projections was then evaluated by

comparison with the actual data from the corresponding

period). The colour legend stands for all three panels, as well as

for Fig. 4. Similar figures depicting the importance of predictors

within the ‘temp’/‘prec’ groups are available in the Supporting

Information (Fig. S2).

Figure 4 Importance of each climate predictor to provide

more accurate SDMs. This figure depicts AUC differences that

were estimated both from spatial evaluation (x-axis) and from

temporal evaluation (y-axis). The mean AUC difference that was

observed when the predictor from a given correlation group was

removed is depicted with an asterisk (with the same colour code

as for Fig. 3). The AUC difference actually differs according to

which predictor was used initially in either the ‘temp’ group or

the ‘prec’ group. These individual values are depicted with a

green ‘plus’ symbol for the ‘temp’ group and with a yellow cross

for the ‘prec’ group. These are the mean results for the 243

species. Results from statistical multiple comparisons are

presented in Fig. S1 in the Supporting Information.
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number of species. For example, while in the ‘temp’ group

some predictors, such as PET or bio1, were vital for provid-

ing the most accurate SDMs for a majority of species, this

was not the case for others, such as bio3 and bio9 (Fig. 5).

All correlation groups were shown to be either the most or

the least relevant for at least some species, although the

number of species concerned greatly differs. Similarly each

predictor within the ‘temp’ group (or the ‘prec’ group) is

the most or the least relevant for at least a few species.

DISCUSSION

Although many studies previously discussed the various

sources of uncertainty in SDMs (Ara�ujo et al., 2005; Buis-

son et al., 2010; Elith et al., 2010), the focus has mainly

been on algorithms and climate scenarios. However, a few

recent studies (Synes & Osborne, 2011; Braunisch et al.,

2013) have highlighted that the choice of the environmental

predictors to include in the models is very important. Our

study is in line with these results, as we show that models

obtained with different (but correlated) sets of variables can

give very different predictions (Fig. S6). Ideally, only the

predictors that are ecologically most pertinent for a species

should be included within SDMs. However, such a priori

information is rarely available, and the number of climate

variables that could potentially be used to predict species

distribution is almost infinite. Unfortunately, there is often

a high level of collinearity among the potential predictors.

Thus, variable selection becomes an issue because of the dif-

ficulties in assessing the relative importance of collinear

variables. Very few studies have attempted to identify the

most relevant predictors of species distributions at large

spatial scale for a wide group of species, leaving the model-

ler to make a subjective yet crucial choice of predictors to

include in its model.

We assessed the relative importance of 22 climate predic-

tors for bird distribution in the USA while controlling for

colinearity among predictors. For example, among the bioc-

lim variables related to precipitation, the use of the annual

precipitation clearly led to more accurate results than any

other precipitation variable. Despite being significant, such a

result still has to be interpreted carefully with regard to its

ecological meaning. Given that the models remain correla-

tive, the causality remains uncertain. For instance, annual

precipitation might actually be a proxy for yet another, more

relevant variable not considered. Even though we were able

to differentiate most of the temperature-related variables, we

could not distinguish whether PET or the mean annual tem-

perature was the most likely to have a direct effect on bird

distribution. Although we are unable to infer what predictors

have a direct (mechanistic) effect on bird distributions, it is

interesting to note that ‘annual’ predictors (such as annual

PET, temperature seasonality and annual precipitation) pro-

duce more accurate distributions than predictors addressing

a specific season, even though most of the species considered

in this study are migratory. Another interesting result is that

the moisture index (ratio of annual precipitation over PET)

appears to roughly equally important as annual precipitation,

although it is only rarely considered as a predictor in SDMs.

Our results further underline how different the predictions

can be when different variables are selected within the same

group (despite being correlated), all other variables being the

same (Fig. S6). A better accuracy can be achieved by choos-

ing a specific variable within each group as it was strongly

emphasized by our results: models accuracy significantly

depends on the variable that was used in both the ‘temp’

group and the ‘prec’ group (Fig. 4).

The spatial evaluations were undertaken on a random sub-

set of the data. A potential problem with random subsets is

that spatial autocorrelation may inflate absolute AUC values.

Figure 5 Variability in predictor ranking among species. Within each vertical bar, sections of different grey intensity represent the

different ranking (higher rankings, that is, higher relevance for darker bars), their lengths being proportional to the number of species

concerned. Rankings from spatial and temporal evaluations are combined here. Only species for which at least two groups or two

predictors were significantly different were considered (n = 241 for spatial evaluation and n = 243 for temporal evaluation within the

correlation group ranking; n = 193 for spatial evaluation and n = 236 for the temporal evaluation for the predictor ranking within the

‘temp’ group; n = 187 for spatial evaluation and n = 232 for the temporal evaluation for the predictor ranking within the ‘prec’ group).
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A way to get closer to non-independence would be to use

spatial filters or striped or checkerboard designs (Munson

et al., 2010), but this would in turn very likely lead to a

truncated estimation of the climatic niche and therefore an

underestimation of the projected distribution (Barbet-Massin

et al., 2010). However, we estimated the importance of pre-

dictors with AUC difference, which makes the absolute AUC

value less crucial for the study. Besides, we were interested in

the relative importance of the predictors, regardless of the

actual performance of the models. For all these reasons, the

spatial random subsetting (replicated seven times) seemed

the most appropriate here. Even though the spatial evalua-

tion replicates were independent from each other, it is not

true for the temporal evaluation replicates which can be

ordered chronologically. Temporal autocorrelation is likely

to inflate the absolute AUC value, especially for the first time

periods. The temporal AUC values actually slightly decrease

when the models are projected further in time. However, the

relative importance (estimated through AUC difference) of

the ‘correlation groups’, as well as the relative importance of

predictor within the ‘temp’ group and the ‘prec’ group is

consistent through time (Figs S2a3,b3 & S3c).

The confidence one can have in the results provided by

this study is magnified by the fact that both spatial and tem-

poral (over 40 years) evaluation provided highly similar

results. This further means that the variables that are the

most relevant in explaining current distribution of bird spe-

cies are also the ones that ensure the best transferability in

time of species distribution models. Even more importantly,

the results were very similar across diverse modelling tech-

niques (except for ANN) despite often being the main source

of uncertainty for predictions (Buisson et al., 2010). Even

though ANN exhibited a good accuracy for most species in

some studies (Thuiller, 2003), it appears to be less reliable

than other modelling techniques regarding its ability to rank

predictors according to their importance. Furthermore, this

study did not rely on a single species that could have very

specific climate factors driving its distribution. Obviously,

the variable importance differed among the 243 species

(Figs 5 & S5) and explaining this interspecific variability will

require further exploration. Nevertheless, some predictors

provided significantly more accurate results when consider-

ing all species, so it seems that most bird species in the USA

have similar climatic drivers.

This study was carried out for birds over a large spatial

extent and at an intermediate spatial resolution (c. 25 km2).

Further work is needed to assess how well these results

extend to other continents, other taxa or other spatial resolu-

tions. We expect them to most strongly apply to bird species

in other temperate regions. Further research and data of sim-

ilar quality will be needed to perform similar assessments for

other biomes, such as tropical regions. Likewise, it is unlikely

that climate drivers of species distributions would be similar

for other taxa, but it would be interesting to know at what

phylogenetic level the climate drivers of species start to differ

the most. We would expect precipitation variables to be

more important for plant species. For this group, other cli-

matic variables such as seasonal precipitation or seasonal

moisture index would be worth added to the pool of vari-

ables to be tested. However, the method we proposed here

can be applied to presence/absence data from any taxa and

in any part of the world, which would allow further

comparisons.
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